ⓘ Blog | Space Race - outer space. The Space Race was a 20th-century competition between two Cold War rivals, the Soviet Union and the United States, to achieve first ..


Timeline of first orbital launches by country

This is a timeline of first orbital launches by country. While a number of countries have built satellites, as of 2019, eleven countries have had the capability to send objects into orbit using their own launch vehicles. Russia and Ukraine inherited the space launchers and satellites capability from the Soviet Union, following its dissolution in 1991. Russia launches its rockets from its own and foreign spaceports. Ukraine launched only from foreign Russian and Kazakh launch facilities until 2015, after which political differences with Russia effectively halted Ukraines ability to produce orbital rockets. France became a space power independently, launching a payload into orbit from Algeria, before joining space launcher facilities in the multi-national Ariane project. The United Kingdom became a space power independently following a single payload insertion into orbit from Australia, before discontinuing official participation in space launch capability, including the Ariane project, in the 1970s. Thus, as of 2019, nine countries and one inter-governmental organisation ESA currently have a proven orbital launch capability, and three countries France,Italy and UK formerly had such an independent capability. In all cases where a country has conducted independent human spaceflights, these launches were preceded by independent unmanned launch capability. The race to launch the first satellite was closely contested by the Soviet Union and the United States, and was the beginning of the Space Race. The launching of satellites, while still contributing to national prestige, is a significant economic activity as well, with public and private rocket systems competing for launches, using cost and reliability as selling points.


Soviet crewed lunar programs

The Soviet crewed lunar programs were a series of programs pursued by the Soviet Union to land a person on the Moon, in competition with the United States Apollo program to achieve the same goal set publicly by President John F. Kennedy on May 25, 1961. The Soviet government publicly denied participating in such a competition, but secretly pursued two programs in the 1960s: crewed lunar flyby missions using Soyuz 7K-L1 spacecraft launched with the Proton-K rocket, and a crewed lunar landing using Soyuz 7K-LOK and LK Lander spacecraft launched with the N1 rocket. Following the dual American successes of the first crewed lunar orbit on December 24–25, 1968 and the first Moon landing on July 20, 1969, and a series of catastrophic N1 failures, both Soviet programs were eventually brought to an end. The Proton-based Zond program was canceled in 1970, and the N1 / L3 program was de facto terminated in 1974 and officially canceled in 1976. Details of both Soviet programs were kept secret until 1990 when the government allowed them to be published under the policy of glasnost.


Post–World War II economic expansion

The post–World War II economic expansion, also known as the golden age of capitalism and the postwar economic boom or simply the long boom, was a broad period of worldwide economic expansion beginning after World War II and ending with the 1973–1975 recession. The United States, Soviet Union, Western European and East Asian countries in particular experienced unusually high and sustained growth, together with full employment. Contrary to early predictions, this high growth also included many countries that had been devastated by the war, such as Japan, West Germany and Austria, South Korea, France, Italy and Greece.


Cold War

The Cold War was a period of geopolitical tension between the Soviet Union with its satellite states, and the United States with its allies after World War II. The historiography of the conflict began between 1946 and 1947. The Cold War began to de-escalate after the Revolutions of 1989. The collapse of the USSR in 1991 was the end of the Cold War. The term "cold" is used because there was no large-scale fighting directly between the two sides, but they each supported major regional conflicts known as proxy wars. The conflict split the temporary wartime alliance against Nazi Germany and its allies, leaving the USSR and the US as two superpowers with profound economic and political differences. The capitalist West was led by the United States, a federal republic with a two-party presidents system, as well as the other First World nations of the Western Bloc that were generally liberal democratic with a free press and independent organizations, but were economically and politically entwined with a network of banana republics and other authoritarian regimes, most of which were the Western Blocs former (the former Western Blocs) colonies. Some major Cold War frontlines such as Indochina, Indonesia, and the Congo were still Western colonies in 1947. The Soviet Union, on the other hand, was a self-proclaimed the Marxist–Leninist state that imposed a totalitarian regime that was led by a small committee, the Politburo. The Party had full control of the state, the press, the military, the economy, and local organizations throughout the Second World, including the Warsaw Pact and other satellites. The Kremlin funded communist parties around the world but was challenged for control by Maos Peoples Republic of China following (Republic of China the following) the Sino-Soviet split of the 1960s. As nearly all the colonial states achieved independence in the period 1945-1960, they became Third World battlefields in the Cold War. India, Indonesia, and Yugoslavia took the lead in promoting neutrality with the Non-Aligned Movement, but it never had much power in its own right. The Soviet Union and the United States never engaged directly in full-scale armed combat. However, both were heavily armed in preparation for a possible all-out nuclear world war. China and the United States fought an undeclared high-casualty war in Korea 1950-53 that resulted in a stalemate. Each side had a nuclear strategy that discouraged an attack by the other side, on the basis that such an attack would lead to the total destruction of the attacker - the doctrine of mutually assured destruction MAD. Aside from the development of the two sides nuclear arsenals, and their deployment of conventional military forces, the struggle for dominance was expressed via proxy wars around the globe, psychological warfare, massive propaganda campaigns and espionage, far-reaching embargoes, rivalry at sports events, and technological competitions such as the Space Race. The first phase of the Cold War began in the first two years after the end of the Second World War in 1945. The Soviet Union consolidated its control over the states of the Eastern Bloc, while the United States began a strategy of global containment to call Soviet power, extending military and financial aid to the countries of Western Europe for example, supporting the anti-communist side in the Greek Civil War and creating the NATO alliance. The Berlin Blockade 1948-49 was the first major crisis of the Cold War. With the victory of the Communist side in the Chinese Civil War and the outbreak of the Korean War 1950-1953, the conflict expanded. The USSR and the US competed for influence in Latin America and the decolonizing states of Africa and Asia. The Soviets suppressed the Hungarian Revolution of 1956. The expansion and escalation sparked more crises, such as the Suez Crisis 1956, the Berlin Crisis of 1961, and the Cuban Missile Crisis of 1962, which was perhaps the closest the two sides came to nuclear war. Meanwhile, an international peace movement took root and grew among citizens around the world, first in Japan from 1954, when people became concerned about nuclear weapons testing, but soon also in Europe and the US. The peace movement, and in particular the anti-nuclear movement, gained pace and popularity from the late 1950s and early 1960s, and continued to grow through the 70s and 80s with large protest marches, demonstrations, and various non-parliamentary activism opposing war and calling for global nuclear disarmament. Following the Cuban Missile Crisis, a new phase began that saw the Sino-Soviet split complicate relations within the Communist sphere, while US allies, particularly France, demonstrated greater independence of action. The USSR crushed the 1968 Prague Spring liberalization program in Czechoslovakia, while the US experienced internal turmoil from the civil rights movement and opposition to the Vietnam War 1955-75, which ended with the defeat of the US-backed South Vietnam, prompting further adjustments. By the 1970s, both sides had become interested in making allowances in order to create a more stable and predictable international system, ushering in a period of detente that saw the Strategic Arms Limitation Talks and the US opening relations with the PRC as a strategic counterweight to the USSR. Detente collapsed at the end of the decade with the beginning of the Soviet–Afghan War in 1979. The early 1980s were another period of increased tension, with the Soviet downing of KAL Flight 007 and the "Able Archer" NATO military exercises, both in 1983. The United States increased diplomatic, military, and economic pressures on the Soviet Union, at a time when the communist state was already suffering from economic stagnation. On 12 June 1982, a million protesters gathered in Central Park, New York to call for an end to the Cold War arms race and nuclear weapons in particular. In the mid-1980s, the new Soviet leader Mikhail Gorbachev introduced the liberalizing reforms of perestroika "reorganization", 1987 and glasnost "openness", c. 1985 and ended Soviet involvement in Afghanistan. Pressures for national sovereignty grew stronger in Eastern Europe, especially Poland. Gorbachev meanwhile refused to use Soviet troops to bolster the faltering Warsaw (the bolster is faltering Warsaw) Pact regimes as had occurred in the past. The result in 1989 was a wave of revolutions that peacefully with the exception of the Romanian Revolution overthrew all of the communist regimes of Central and Eastern Europe. The Communist Party of the Soviet Union itself lost control and was banned following an abortive coup attempt in August 1991. This in turn led to the formal dissolution of the USSR in December 1991 and the collapse of communist modes in other countries such as Mongolia, Cambodia, and South Yemen. The United States remained as the worlds only superpower. The Cold War and its events have left a significant legacy. It is often referred to in popular culture, especially in media featuring themes of espionage notably the internationally successful James Bond book and film franchise and the threat of nuclear warfare. Meanwhile, a renewed state of tension between the Soviet Unions successor state, Russia, and the United States in the 2010s including its Western allies and growing tension between an increasingly powerful China and the U.S. and its Western Allies have each was referred to as the Second Cold War.


Extravehicular activity

Extravehicular activity is any activity done by an astronaut or cosmonaut outside a spacecraft beyond the Earths appreciable atmosphere. The term most commonly applies to a spacewalk made outside a craft orbiting Earth. On March 18, 1965, Alexei Leonov became the first human to perform a spacewalk, exiting the capsule during the Voskhod 2 mission for 12 minutes and 9 seconds. The term also applied to lunar surface exploration performed by six pairs of American astronauts in the Apollo program from 1969 to 1972. On July 21, 1969, Neil Armstrong became the first human to perform a moonwalk, outside his lunar lander on Apollo 11 for 2 hours and 31 minutes. On the last three Moon missions astronauts also performed deep-space EVAs on the return to Earth, to retrieve film canisters from the outside of the spacecraft. Astronauts Pete Conrad, Joseph Kerwin, and Paul Weitz also used EVA in 1973 to repair launch damage to Skylab, the United States first space station. A "Stand-up" SEVA is when an astronaut does not fully leave a spacecraft, but is completely reliant on the spacesuit for environmental support. Its name derives from the astronaut "standing up" in the open hatch, usually to record or assist a spacewalking astronaut. EVAs may be either tethered the astronaut is connected to the spacecraft; oxygen and electrical power can be supplied through an umbilical cable; no propulsion is needed to return to the spacecraft, or untethered. Untethered spacewalks were only performed on three missions in 1984 using the Manned Maneuvering Unit MMU, and on a flight test in 1994 of the Simplified Aid For EVA Rescue SAFER, a safety device worn on tethered U.S. EVAs. The Soviet Union/Russia, the United States, and China have conducted EVAs.


Timeline of Solar System exploration

This is a timeline of Solar System exploration ordered by date of spacecraft launch. It includes: All spacecraft that have left Earth orbit for the purposes of Solar System exploration or were launched with that intention but failed, including lunar probes. A small number of pioneering or notable Earth-orbiting craft. It does not include: Probes that failed at launch. Centuries of terrestrial telescopic observation. Space probes leaving Earth orbit that are not concerned with Solar System exploration. The great majority of Earth-orbiting satellites. The dates listed are launch dates, but the achievements noted may have occurred some time later - in some cases, a considerable time later.


Arms race

An arms race occurs when two or more nations participate in interactive or competitive increases in "persons under arms" as well as "war material". Simply defined as a competition between two or more states to have superior armed forces; a competition concerning production of weapons, the growth of a military, and the aim of superior military technology. The term is also used to describe any long-term escalating competitive situation where each competitor focuses on out-doing the others.

Space Race

Space Race

The Space Race was a 20th-century competition between two Cold War rivals, the Soviet Union and the United States, to achieve firsts in spaceflight capability. It had its origins in the ballistic missile-based nuclear arms race between the two nations that occurred following World War II. The technological advantage required to rapidly achieve spaceflight milestones was seen as necessary for national security, and mixed with the symbolism and ideology of the time. The Space Race led to pioneering efforts to launch artificial satellites, uncrewed space probes of the Moon, Venus, and Mars, and human spaceflight in low Earth orbit and to the Moon.

The competition began in earnest on August 2, 1955, when the Soviet Union responded to the US announcement four days earlier of intent to launch artificial satellites for the International Geophysical Year, by declaring they would also launch a satellite "in the near future". The Soviet Union achieved the first successful launch with the October 4, 1957, orbiting of Sputnik 1, and sent the first human to space with the orbital flight of Yuri Gagarin on April 12, 1961. The USSR also sent the first woman, Valentina Tereshkova, to space on June 16, 1963, with numerous other firsts taking place over the next few years with regards to flight duration, spacewalks and related activities. According to Russian sources, these achievements led to the conclusion that the USSR had an advantage in space technology in the early 1960s.

According to US sources, the "race" peaked with the July 20, 1969, US landing of the first humans on the Moon with Apollo 11. Most US sources will point to the Apollo 11 lunar landing as a singular achievement far outweighing any combination of Soviet achievements. The USSR attempted several crewed lunar missions, but eventually canceled them and concentrated on Earth orbital space stations, while the US landed several more times on the Moon.

A period of detente followed with the April 1972 agreement on a co-operative Apollo–Soyuz Test Project ASTP, resulting in the July 1975 rendezvous in Earth orbit of a US astronaut crew with a Soviet cosmonaut crew and co-developing the enabling docking standard APAS-75. Though cooperation had been pursued since the very beginning of the Space Age, the ASTP eased the competition to enable later cooperation. The end of the Space Race and competition is not clear cut, since the Apollo 11 Moon landing and the ASTP have been identified as such, but with the December 1991 dissolution of the Soviet Union it was ultimately replaced through increased spaceflight cooperation with the APAS enabled Shuttle– Mir program and ISS between the US and the newly founded Russian Federation. This leads many to conclude that the US "won" the space race.

The Space Race has left a technology legacy of increased space related development and advances. It sparked increases in spending on education and research and development, which led to many spin-off effects such as the NASA Technology Transfer Program.


1.1. Early rocket development Germany during World War II

The origins of the Space Race can be traced to Germany, beginning in the 1930s and continuing during World War II when Nazi Germany researched and built operational ballistic missiles capable of sub-orbital spaceflight. Starting in the early 1930s, during the last stages of the Weimar Republic, German aerospace engineers experimented with liquid-fueled rockets, with the goal that one day they would be capable of reaching high altitudes and traversing long distances. The head of the German Armys Ballistics and Munitions Branch, Lieutenant Colonel Karl Emil Becker, gathered a small team of engineers that included Walter Dornberger and Leo Zanssen, to figure out how to use rockets as long-range artillery in order to get around the Treaty of Versailles ban on research and development of long-range cannons. Wernher von Braun, a young engineering prodigy, was recruited by Becker and Dornberger to join their secret army program at Kummersdorf-West in 1932. Von Braun dreamed of conquering outer space with rockets and did not initially see the military value in missile technology.

During the Second World War, General Dornberger was the military head of the armys rocket program, Zanssen became the commandant of the Peenemunde army rocket center, and von Braun was the technical director of the ballistic missile program. They led the team that built the Aggregat-4 A-4 rocket, which became the first vehicle to reach outer space during its test flight program in 1942 and 1943. By 1943, Germany began mass-producing the A-4 as the Vergeltungswaffe 2, a ballistic missile with a 320 kilometers 200 mi range carrying a 1.130 kilograms 2.490 lb warhead at 4.000 kilometers per hour 2.500 mph. Its supersonic speed meant there was no defense against it, and radar detection provided little warning. Germany used the weapon to bombard southern England and parts of Allied-liberated western Europe from 1944 until 1945. After the war, the V-2 became the basis of early American and Soviet rocket designs.

At wars end, American, British, and Soviet scientific intelligence teams competed to capture Germanys rocket engineers along with the German rockets themselves and the designs on which they were based. Each of the Allies captured a share of the available members of the German rocket team, but the United States benefited the most with Operation Paperclip, recruiting von Braun and most of his engineering team, who later helped develop the American missile and space exploration programs. The United States also acquired a large number of complete V2 rockets.


1.2. Early rocket development Soviet rocket development

The German rocket center in Peenemunde was located in the eastern part of Germany, which became the Soviet zone of occupation. On Stalins orders, the Soviet Union sent its best rocket engineers to this region to see what they could salvage for future weapons systems. The Soviet rocket engineers were led by Sergei Korolev. He had been involved in space clubs and early Soviet rocket design in the 1930s, but was arrested in 1938 during Joseph Stalins Great Purge and imprisoned for six years in Gulag. After the war, he became the USSRs chief rocket and spacecraft engineer, essentially the Soviet counterpart to von Braun. His identity was kept a state secret throughout the Cold War, and he was identified publicly only as "the Chief Designer." In the West, his name was only officially revealed when he died in 1966.

After almost a year in the area around Peenemunde, Soviet officials conducted Operation Osoaviakhim and later moved more than 170 of the top captured German rocket specialists to Gorodomlya Island on Lake Seliger, about 240 kilometers 150 mi northwest of Moscow. They were not allowed to participate in final Soviet missile design, but were used as problem-solving consultants to the Soviet engineers. They helped in the following areas: the creation of a Soviet version of the A-4; work on "organizational schemes"; research in improving the A-4 main engine; development of a 100-ton engine; assistance in the "layout" of plant production rooms; and preparation of rocket assembly using German components. With their help, particularly Helmut Grottrups group, Korolev reverse-engineered the A-4 and built his own version of the rocket, the R-1, in 1948. Later, he developed his own distinct designs, though many of these designs were influenced by the Grottrup Groups G4-R14 design from 1949. The Germans were eventually repatriated in 1952–53. Details of the German achievements and potential contributions to the Soviet rocket and space program were evaluated after their return from Gorodomlya.


1.3. Early rocket development American rocket development

The American professor Robert H. Goddard had worked on developing solid-propellant rockets since 1914, and demonstrated a light battlefield rocket to the US Army Signal Corps only five days before the signing of the armistice that ended World War I. He also started developing liquid-propellant rockets in 1921, yet he had not been taken seriously by the public.

Von Braun and his team were sent to the United States Armys White Sands Proving Ground, located in New Mexico, in 1945. They set about assembling the captured V2s and began a program of launching them and instructing American engineers in their operation. These tests led to the first rocket to take photos from outer space, and the first two-stage rocket, the WAC Corporal-V2 combination, in 1949. The German rocket team was moved from Fort Bliss to the Armys new Redstone Arsenal, located in Huntsville, Alabama, in 1950. From here, von Braun and his team developed the Armys first operational medium-range ballistic missile, the Redstone rocket, that in slightly modified versions, launched both Americas first satellite, and the first piloted Mercury space missions. It became the basis for both the Jupiter and Saturn family of rockets.


1.4. Early rocket development Cold War missile race

The Cold War 1947–1991 developed between two former allies, the Soviet Union and the United States, soon after the end of the Second World War. It involved a continuing state of political conflict, military tension, proxy wars, and economic competition, primarily between the Soviet Union and its satellite states often referred to as the Eastern Bloc and the powers of the Western world, particularly the United States. The primary participants military forces never clashed directly, but expressed this conflict through military coalitions, strategic conventional force deployments, extensive aid to states deemed vulnerable, proxy wars, espionage, propaganda, a nuclear arms race, and economic and technological competitions, such as the Space Race.

In simple terms, the Cold War could be viewed as an expression of the ideological struggle between communism and capitalism. The United States faced a new uncertainty beginning in September 1949, when it lost its monopoly on the atomic bomb. American intelligence agencies discovered that the Soviet Union had exploded its first atomic bomb, with the consequence that the United States potentially could face a future nuclear war that, for the first time, might devastate its cities. Given this new danger, the United States participated in an arms race with the Soviet Union that included development of the hydrogen bomb, as well as intercontinental strategic bombers and intercontinental ballistic missiles ICBMs capable of delivering nuclear weapons. A new fear of communism and its sympathizers swept the United States during the 1950s, which devolved into paranoid McCarthyism. With communism spreading in China, Korea, and Eastern Europe, Americans came to feel so threatened that popular and political culture condoned extensive "witch-hunts" to expose communist spies. Part of the American reaction to the Soviet atomic and hydrogen bomb tests included maintaining a large Air Force, under the control of the Strategic Air Command SAC. SAC employed intercontinental strategic bombers, as well as medium-bombers based close to Soviet airspace in western Europe and in Turkey that were capable of delivering nuclear payloads.

For its part, the Soviet Union harbored fears of invasion. Having suffered at least 27 million casualties during World War II after being invaded by Nazi Germany in 1941, the Soviet Union was wary of its former ally, the United States, which until late 1949 was the sole possessor of atomic weapons. The United States had used these weapons operationally during World War II, and it could use them again against the Soviet Union, laying waste to its cities and military centers. Since the Americans had a much larger air force than the Soviet Union, and the United States maintained advance air bases near Soviet territory, in 1947 Stalin ordered the development of intercontinental ballistic missiles ICBMs in order to counter the perceived American threat.

In 1953, Korolev was given the go-ahead to develop the R-7 Semyorka rocket, which represented a major advance from the German design. Although some of its components notably boosters still resembled the German G-4, the new rocket incorporated staged design, a completely new control system, and a new fuel. It was successfully tested on August 21, 1957, and became the worlds first fully operational ICBM the following month. It was later used to launch the first satellite into space, and derivatives launched all piloted Soviet spacecraft.

The United States had multiple rocket programs divided among the different branches of the American armed services, which meant that each force developed its own ICBM program. The Air Force initiated ICBM research in 1945 with the MX-774. However, its funding was cancelled and only three partially successful launches were conducted in 1947. In 1950, von Braun began testing the Air Force PGM-11 Redstone rocket family at Cape Canaveral. In 1951, the Air Force began a new ICBM program called MX-1593, and by 1955 this program was receiving top-priority funding. The MX-1593 program evolved to become the Atlas-A, with its maiden launch occurring June 11, 1957, becoming the first successful American ICBM. Its upgraded version, the Atlas-D rocket, later served as a nuclear ICBM and as the orbital launch vehicle for Project Mercury and the remote-controlled Agena Target Vehicle used in Project Gemini.

With the Cold War as an engine for change in the ideological competition between the United States and the Soviet Union, a coherent space policy began to take shape in the United States during the late 1950s. Korolev took inspiration from the competition as well, achieving many firsts to counter the possibility that the United States might prevail.


2.1. Competition begins First artificial satellite

In 1955, with both the United States and the Soviet Union building ballistic missiles that could be utilized to launch objects into space, the stage was set for nationalistic competition. In separate announcements four days apart, both nations publicly announced that they would launch artificial Earth satellites by 1957 or 1958. On July 29, 1955, James C. Hagerty, President Dwight D. Eisenhowers press secretary, announced that the United States intended to launch "small Earth circling satellites" between July 1, 1957, and December 31, 1958, as part of the US contribution to the International Geophysical Year IGY. Four days later, at the Sixth Congress of International Astronautical Federation in Copenhagen, scientist Leonid I. Sedov spoke to international reporters at the Soviet embassy and announced his countrys intention to launch a satellite as well, in the "near future". On August 30, 1955, Korolev managed to get the Soviet Academy of Sciences to create a commission whose purpose was to beat the Americans into Earth orbit: this was the de facto start date for the Space Race. The Council of Ministers of the Soviet Union began a policy of treating development of its space program as classified information.

Initially, President Eisenhower was worried that a satellite passing above a nation at over 100 kilometers 62 mi might be construed as violating that nations sovereign airspace. He was concerned that the Soviet Union would accuse the Americans of an illegal overflight, thereby scoring a propaganda victory at his expense. Eisenhower and his advisors were of the opinion that a nations airspace sovereignty did not extend past the Karman line, and they used the 1957–58 International Geophysical Year launches to establish this principle in international law. Eisenhower also feared that he might cause an international incident and be called a "warmonger" if he were to use military missiles as launchers. Therefore, he selected the untried Naval Research Laboratorys Vanguard rocket, which was a research-only booster. This meant that von Brauns team was not allowed to put a satellite into orbit with their Jupiter-C rocket, because of its intended use as a future military vehicle. On September 20, 1956, von Braun and his team did launch a Jupiter-C that was capable of putting a satellite into orbit, but the launch was used only as a suborbital test of reentry vehicle technology.

Korolev received word about von Brauns 1956 Jupiter-C test and, mistakenly thinking it was a satellite mission that failed, expedited plans to get his own satellite in orbit. Since the R-7 was substantially more powerful than any of the US boosters, he made sure to take full advantage of this capability by designing Object D as his primary satellite. It was given the designation D, to distinguish it from other R-7 payload designations A, B, V, and G which were nuclear weapon payloads. Object D dwarfed the proposed US satellites, having a weight of 1.400 kilograms 3.100 lb, of which 300 kilograms 660 lb would be composed of scientific instruments that would photograph the Earth, take readings on radiation levels, and check on the planets magnetic field. However, things were not going along well with the design and manufacturing of the satellite, so in February 1957, Korolev sought and received permission from the Council of Ministers to build a Prosteishy Sputnik PS-1, or simple satellite. The Council also decreed that Object D be postponed until April 1958. The new Sputnik was a metallic sphere that would be a much lighter craft, weighing 83.8 kilograms 185 lb and having a 58-centimeter 23 in diameter. The satellite would not contain the complex instrumentation that Object D had, but had two radio transmitters operating on different short wave radio frequencies, the ability to detect if a meteoroid were to penetrate its pressure hull, and the ability to detect the density of the Earths thermosphere.

Korolev was buoyed by the first successful launches of the R-7 rocket in August and September, which paved the way for the launch of Sputnik. Word came that the US was planning to announce a major breakthrough at an International Geophysical Year conference at the National Academy of Sciences in Washington D.C., with a paper entitled "Satellite Over the Planet", on October 6, 1957. Korolev anticipated that von Braun might launch a Jupiter-C with a satellite payload on or around October 4 or 5, in conjunction with the paper. He hastened the launch, moving it to October 4. The launch vehicle for PS-1 was a modified R-7 – vehicle 8K71PS number M1-PS– without much of the test equipment and radio gear that was present in the previous launches. It arrived at the Soviet missile base Tyura-Tam in September and was prepared for its mission at launch site number one. The first launch took place on Friday, October 4, 1957 at exactly 10:28:34 pm Moscow time, with the R-7 and the now named Sputnik 1 satellite lifting off the launch pad and placing the artificial "moon" into an orbit a few minutes later. This "fellow traveler," as the name is translated in English, was a small, beeping ball, less than two feet in diameter and weighing less than 200 pounds. But the celebrations were muted at the launch control center until the down-range far east tracking station at Kamchatka received the first distinctive beep. beep. beep sounds from Sputnik 1 s radio transmitters, indicating that it was on its way to completing its first orbit. About 95 minutes after launch, the satellite flew over its launch site, and its radio signals were picked up by the engineers and military personnel at Tyura-Tam: thats when Korolev and his team celebrated the first successful artificial satellite placed into Earth-orbit.


2.2. Competition begins US reaction

The Soviet success raised a great deal of concern in the United States. For example, economist Bernard Baruch wrote in an open letter titled "The Lessons of Defeat" to the New York Herald Tribune: "While we devote our industrial and technological power to producing new model automobiles and more gadgets, the Soviet Union is conquering space. It is Russia, not the United States, who has had the imagination to hitch its wagon to the stars and the skill to reach for the moon and all but grasp it. America is worried. It should be."

Eisenhower ordered project Vanguard to move up its timetable and launch its satellite much sooner than originally planned. The December 6, 1957 Project Vanguard launch failure occurred at Cape Canaveral Air Force Station in Florida, broadcast live in front of a US television audience. It was a monumental failure, exploding a few seconds after launch, and it became an international joke. The satellite appeared in newspapers under the names Flopnik, Stayputnik, Kaputnik, and Dudnik. In the United Nations, the Soviet delegate offered the US representative aid "under the Soviet program of technical assistance to backwards nations." Only in the wake of this very public failure did von Brauns Redstone team get the go-ahead to launch their Jupiter-C rocket as soon as they could. In Britain, the USs Western Cold War ally, the reaction was mixed: some celebrated the fact that the Soviets had reached space first, while others feared the destructive potential that military uses of spacecraft might bring.

On January 31, 1958, nearly four months after the launch of Sputnik 1, von Braun and the United States successfully launched its first satellite on a four-stage Juno I rocket derived from the US Armys Redstone missile, at Cape Canaveral. The satellite Explorer 1 was 30.66 pounds 13.91 kg in mass. The payload of Explorer 1 weighed 18.35 pounds 8.32 kg. It carried a micrometeorite gauge and a Geiger-Muller tube. It passed in and out of the Earth-encompassing radiation belt with its 194-by-1.368-nautical-mile 360 by 2.534 km orbit, therefore saturating the tubes capacity and proving what Dr. James Van Allen, a space scientist at the University of Iowa, had theorized. The belt, named the Van Allen radiation belt, is a doughnut-shaped zone of high-level radiation intensity around the Earth above the magnetic equator. Van Allen was also the man who designed and built the satellite instrumentation of Explorer 1. The satellite measured three phenomena: cosmic ray and radiation levels, the temperature in the spacecraft, and the frequency of collisions with micrometeorites. The satellite had no memory for data storage, therefore it had to transmit continuously. In March 1958 a second satellite was sent into orbit with augmented cosmic ray instruments.

On April 2, 1958, President Eisenhower reacted to the Soviet space lead in launching the first satellite by recommending to the US Congress that a civilian agency be established to direct nonmilitary space activities. Congress, led by Senate Majority Leader Lyndon B. Johnson, responded by passing the National Aeronautics and Space Act, which Eisenhower signed into law on July 29, 1958. This law turned the National Advisory Committee on Aeronautics into the National Aeronautics and Space Administration NASA. It also created a Civilian-Military Liaison Committee, appointed by the President, responsible for coordinating the nations civilian and military space programs.

On October 21, 1959, Eisenhower approved the transfer of the Armys remaining space-related activities to NASA. On July 1, 1960, the Redstone Arsenal became NASAs George C. Marshall Space Flight Center, with von Braun as its first director. Development of the Saturn rocket family, which when mature gave the US parity with the Soviets in terms of lifting capability, was thus transferred to NASA.


3. Uncrewed lunar probes

In 1958, Korolev upgraded the R-7 to be able to launch a 400-kilogram 880 lb payload to the Moon. Three secret 1958 attempts to launch Luna E-1-class impactor probes failed. The fourth attempt, Luna 1, launched successfully on January 2, 1959, but missed the Moon. The fifth attempt on June 18 also failed at launch. The 390-kilogram 860 lb Luna 2 successfully impacted the Moon on September 14, 1959. The 278.5-kilogram 614 lb Luna 3 successfully flew by the Moon and sent back pictures of its far side on October 6, 1959.

The US reacted to the Luna program by embarking on the Ranger program in 1959, managed by NASAs Jet Propulsion Laboratory. The Block I Ranger 1 and Ranger 2 suffered Atlas-Agena launch failures in August and November 1961. The 727-pound 330 kg Block II Ranger 3 launched successfully on January 26, 1962, but missed the Moon. The 730-pound 330 kg Ranger 4 became the first US spacecraft to reach the Moon, but its solar panels and navigational system failed near the Moon and it impacted the far side without returning any scientific data. Ranger 5 ran out of power and missed the Moon by 725 kilometers 391 nmi on October 21, 1962. The first successful Ranger mission was the 806-pound 366 kg Block III Ranger 7 which impacted on July 31, 1964.


4. First human in space

By 1959, some American observers had predicted that the Soviet Union would be the first to get a human into space because of the time needed to prepare for Mercurys first launch. On April 12, 1961, the USSR surprised the world again by launching Yuri Gagarin into a single orbit around the Earth in a craft they called Vostok 1. They dubbed Gagarin the first cosmonaut, roughly translated from Russian and Greek as "sailor of the universe". Although he had the ability to take control of his capsule in an emergency by opening an envelope he had in the cabin that contained a code that could be typed into the computer, it was flown in an automatic mode as a precaution; medical science at that time did not know what would happen to a human in the weightlessness of space. Vostok 1 orbited the Earth for 108 minutes and made its reentry over the Soviet Union, with Gagarin ejecting from the spacecraft at 7.000 meters 23.000 ft, and landing by parachute. The Federation Aeronautique Internationale International Federation of Aeronautics credited Gagarin with the worlds first human space flight, although their qualifying rules for aeronautical records at the time required pilots to take off land with their craft. For this reason, the Soviet Union omitted from their FAI submission the fact that Gagarin did not land with his capsule. When the FAI filing for Gherman Titovs second Vostok flight in August 1961 disclosed the ejection landing technique, the FAI committee decided to investigate, and concluded that the technological accomplishment of human spaceflight lay in the safe launch, orbiting, and return, rather than the manner of landing, and revised their rules, keeping Gagarins and Titovs records intact.

Gagarin became a national hero of the Soviet Union and the Eastern Bloc, and a worldwide celebrity. Moscow and other cities in the USSR held mass demonstrations, the scale of which was second only to the World War II Victory Parade of 1945. April 12 was declared Cosmonautics Day in the USSR, and is celebrated today in Russia as one of the official "Commemorative Dates of Russia." In 2011, it was declared the International Day of Human Space Flight by the United Nations.

The radio communication between the launch control room and Gagarin included the following dialogue at the moment of rocket launch:

Korolev: "Preliminary stage. intermediate. main. lift off! We wish you a good flight. Everything is all right." Gagarin: Поехали! Poyekhali! - Lets go!.

Gagarins informal poyekhali! became a historical phrase in the Eastern Bloc, used to refer to the beginning of the human space flight era.


5. First American in space

The US Air Force had been developing a program to launch the first man in space, named Man in Space Soonest. This program studied several different types of one-man space vehicles, settling on a ballistic re-entry capsule launched on a derivative Atlas missile, and selecting a group of nine candidate pilots. After NASAs creation, the program was transferred over to the civilian agency and renamed Project Mercury on November 26, 1958. NASA selected a new group of astronaut from the Greek for "star sailor" candidates from Navy, Air Force and Marine test pilots, and narrowed this down to a group of seven for the program. Capsule design and astronaut training began immediately, working toward preliminary suborbital flights on the Redstone missile, followed by orbital flights on the Atlas. Each flight series would first start uncrewed, then carry a non-human primate, then finally humans.

On May 5, 1961, Alan Shepard became the first American in space, launching in a ballistic trajectory on Mercury-Redstone 3, in a spacecraft he named Freedom 7. Though he did not achieve orbit like Gagarin, he was the first person to exercise manual control over his spacecrafts attitude and retro-rocket firing. After his successful return, Shepard was celebrated as a national hero, honored with parades in Washington, New York and Los Angeles, and received the NASA Distinguished Service Medal from President John F. Kennedy.


6. Kennedy aims for the Moon

Before Gagarins flight, US President John F. Kennedys support for Americas crewed space program was lukewarm. Jerome Wiesner of MIT, who served as a science advisor to presidents Eisenhower and Kennedy, and himself an opponent of crewed space exploration, remarked, "If Kennedy could have opted out of a big space program without hurting the country in his judgment, he would have." As late as March 1961, when NASA administrator James E. Webb submitted a budget request to fund a Moon landing before 1970, Kennedy rejected it because it was simply too expensive. Some were surprised by Kennedys eventual support of NASA and the space program because of how often he had attacked the Eisenhower administrations inefficiency during the election.

Gagarins flight changed this; now Kennedy sensed the humiliation and fear on the part of the American public over the Soviet lead. Additionally, the Bay of Pigs invasion, planned before his term began but executed during it, was an embarrassment to his administration due to the colossal failure of the US forces. Looking for something to save political face, he sent a memo dated April 20, 1961, to Vice President Lyndon B. Johnson, asking him to look into the state of Americas space program, and into programs that could offer NASA the opportunity to catch up. The two major options at the time were either the establishment of an Earth orbital space station or a crewed landing on the Moon. Johnson, in turn, consulted with von Braun, who answered Kennedys questions based on his estimates of US and Soviet rocket lifting capability. Based on this, Johnson responded to Kennedy, concluding that much more was needed to reach a position of leadership, and recommending that the crewed Moon landing was far enough in the future that the US had a fighting chance to achieve it first.

Kennedy ultimately decided to pursue what became the Apollo program, and on May 25 took the opportunity to ask for Congressional support in a Cold War speech titled "Special Message on Urgent National Needs". Full text He justified the program in terms of its importance to national security, and its focus of the nations energies on other scientific and social fields. He rallied popular support for the program in his "We choose to go to the Moon" speech, on September 12, 1962, before a large crowd at Rice University Stadium, in Houston, Texas, near the construction site of the new Lyndon B. Johnson Space Center facility. Full text Khrushchev responded to Kennedys implicit challenge with silence, refusing to publicly confirm or deny the Soviets were pursuing a "Moon race". As later disclosed, the Soviet Union secretly pursued a crewed lunar program until 1974.


7.1. Completion of Vostok and Mercury programs Mercury

American Virgil "Gus" Grissom repeated Shepards suborbital flight in Liberty Bell 7 on July 21, 1961. Almost a year after the Soviet Union put a human into orbit, astronaut John Glenn became the first American to orbit the Earth, on February 20, 1962. His Mercury-Atlas 6 mission completed three orbits in the Friendship 7 spacecraft, and splashed down safely in the Atlantic Ocean, after a tense reentry, due to what falsely appeared from the telemetry data to be a loose heat-shield. As the first American in orbit, Glenn became a national hero, and received a ticker-tape parade in New York City, reminiscent of that given for Charles Lindbergh. On February 23, 1962, President Kennedy escorted him in a parade at Cape Canaveral Air Force Station, where he awarded Glenn with the NASA service medal.

The United States launched three more Mercury flights after Glenns: Aurora 7 on May 24, 1962 duplicated Glenns three orbits, Sigma 7 on October 3, 1962 six orbits, and Faith 7 on May 15, 1963 22 orbits 32.4 hours, the maximum capability of the spacecraft. NASA at first intended to launch one more mission, extending the spacecrafts endurance to three days, but since this would not beat the Soviet record, it was decided instead to concentrate on developing Project Gemini.


7.2. Completion of Vostok and Mercury programs Vostok

Gherman Titov became the first Soviet cosmonaut to exercise manual control of his Vostok 2 craft on August 6, 1961. The Soviet Union demonstrated 24-hour launch pad turnaround and the capability to launch two piloted spacecraft, Vostok 3 and Vostok 4, in essentially identical orbits, on August 11 and 12, 1962. The two spacecraft came within approximately 6.5 kilometers 4.0 mi of one another, close enough for radio communication. Vostok 4 also set a record of nearly four days in space. Though the two crafts orbits were as nearly identical as possible given the accuracy of the launch rockets guidance system, slight variations still existed which drew the two craft at first as close to each other as 6.5 kilometers 3.5 nautical miles, then as far apart as 2.850 kilometers 1.540 nautical miles. There were no maneuvering rockets on the Vostok to permit space rendezvous, required to keep two spacecraft a controlled distance apart.

The Soviet Union duplicated its dual-launch feat with Vostok 5 and Vostok 6 June 16, 1963. This time they launched the first woman also the first civilian, Valentina Tereshkova, into space on Vostok 6. Launching a woman was reportedly Korolevs idea, and it was accomplished purely for propaganda value. Tereshkova was one of a small corps of female cosmonauts who were amateur parachutists, but Tereshkova was the only one to fly. The USSR didnt again open its cosmonaut corps to women until 1980, two years after the United States opened its astronaut corps to women.

The Soviets kept the details and true appearance of the Vostok capsule secret until the April 1965 Moscow Economic Exhibition, where it was first displayed without its aerodynamic nose cone concealing the spherical capsule. The "Vostok spaceship" had been first displayed at the July 1961 Tushino air show, mounted on its launch vehicles third stage, with the nose cone in place. A tail section with eight fins was also added, in an apparent attempt to confuse western observers. This spurious tail section also appeared on official commemorative stamps and a documentary.


8. Kennedy proposes a joint US-USSR program

After a first US-USSR Dryden-Blagonravov agreement and cooperation on the Echo II balloon satellite in 1962, President Kennedy proposed on September 20, 1963, in a speech before the United Nations General Assembly, that the United States and the Soviet Union join forces in an effort to reach the Moon. Kennedy thus changed his mind regarding the desirability of the space race, preferring instead to ease tensions with the Soviet Union by cooperating on projects such as a joint lunar landing. Soviet Premier Nikita Khrushchev initially rejected Kennedys proposal. However, on October 2, 1997, it was reported that Khrushchevs son Sergei claimed Khrushchev was poised to accept Kennedys proposal at the time of Kennedys assassination on November 22, 1963. During the next few weeks he reportedly concluded that both nations might realize cost benefits and technological gains from a joint venture, and decided to accept Kennedys offer based on a measure of rapport during their years as leaders of the worlds two superpowers, but changed his mind and dropped the idea since he did not have the same trust for Kennedys successor, Lyndon Johnson.

As President, Johnson steadfastly pursued the Gemini and Apollo programs, promoting them as Kennedys legacy to the American public. One week after Kennedys death, he issued an executive order renaming the Cape Canaveral and Apollo launch facilities after Kennedy.


9. Gemini and Voskhod

Focused by the commitment to a Moon landing, in January 1962 the US announced Project Gemini, a two-person spacecraft that would support the later three-person Apollo by developing the key spaceflight technologies of space rendezvous and docking of two craft, flight durations of sufficient length to simulate going to the Moon and back, and extra-vehicular activity to accomplish useful work outside the spacecraft.

Meanwhile, Korolev had planned further, long-term missions for the Vostok spacecraft, and had four Vostoks in various stages of fabrication in late 1963 at his OKB-1 facilities. At that time, the Americans announced their ambitious plans for the Project Gemini flight schedule. These plans included major advancements in spacecraft capabilities, including a two-person spacecraft, the ability to change orbits, the capacity to perform an extravehicular activity EVA, and the goal of docking with another spacecraft. These represented major advances over the previous Mercury or Vostok capsules, and Korolev felt the need to try to beat the Americans to many of these innovations. Korolev already had begun designing the Vostoks replacement, the next-generation Soyuz spacecraft, a multi-cosmonaut spacecraft that had at least the same capabilities as the Gemini spacecraft. Soyuz would not be available for at least three years, and it could not be called upon to deal with this new American challenge in 1964 or 1965. Political pressure in early 1964 - which some sources claim was from Khrushchev while other sources claim was from other Communist Party officials - pushed him to modify his four remaining Vostoks to beat the Americans to new space firsts in the size of flight crews, and the duration of missions.


9.1. Gemini and Voskhod Voskhod program

The greater advances of the Soviet space program at the time allowed their space program to achieve other significant firsts, including the first EVA "spacewalk". Gemini took a year longer than planned to accomplish its first flight, allowing the Soviets to achieve another first, launching the first spacecraft with a three-cosmonaut crew, Voskhod 1, on October 12, 1964. The USSR touted another technological achievement during this mission: it was the first space flight during which cosmonauts performed in a shirt-sleeve-environment. However, flying without spacesuits was not due to safety improvements in the Soviet spacecrafts environmental systems; rather this innovation was accomplished because the crafts limited cabin space did not allow for spacesuits. Flying without spacesuits exposed the cosmonauts to significant risk in the event of potentially fatal cabin depressurization. This feat was not repeated until the US Apollo Command Module flew in 1968; this later mission was designed from the outset to safely transport three astronauts in a shirt-sleeve environment while in space.

By October 16, 1964, Leonid Brezhnev and a small cadre of high-ranking Communist Party officials deposed Khrushchev as Soviet government leader a day after Voskhod 1 landed, in what was called the "Wednesday conspiracy". The new political leaders, along with Korolev, ended the technologically troublesome Voskhod program, cancelling Voskhod 3 and 4, which were in the planning stages, and started concentrating on reaching the Moon. Voskhod 2 ended up being Korolevs final achievement before his death on January 14, 1966, as it became the last of the many space firsts that demonstrated the USSRs domination in spacecraft technology during the early 1960s. According to historian Asif Siddiqi, Korolevs accomplishments marked "the absolute zenith of the Soviet space program, one never, ever attained since." There was a two-year pause in Soviet piloted space flights while Voskhods replacement, the Soyuz spacecraft, was designed and developed.

On March 18, 1965, about a week before the first piloted Project Gemini space flight, the USSR launched the two-cosmonaut Voskhod 2 mission with Pavel Belyayev and Alexei Leonov. Voskhod 2s design modifications included the addition of an inflatable airlock to allow for extravehicular activity EVA, also known as a spacewalk, while keeping the cabin pressurized so that the capsules electronics would not overheat. Leonov performed the first-ever EVA as part of the mission. A fatality was narrowly avoided when Leonovs spacesuit expanded in the vacuum of space, preventing him from re-entering the airlock. In order to overcome this, he had to partially depressurize his spacesuit to a potentially dangerous level. He succeeded in safely re-entering the ship, but he and Belyayev faced further challenges when the spacecrafts atmospheric controls flooded the cabin with 45% pure oxygen, which had to be lowered to acceptable levels before re-entry. The reentry involved two more challenges: an improperly timed retrorocket firing caused the Voskhod 2 to land 386 kilometers 240 mi off its designated target area, the town of Perm; and the instrument compartments failure to detach from the descent apparatus caused the spacecraft to become unstable during reentry.


9.2. Gemini and Voskhod Project Gemini

Though delayed a year to reach its first flight, Gemini was able to take advantage of the USSRs two-year hiatus after Voskhod, which enabled the US to catch up and surpass the previous Soviet lead in piloted spaceflight. Gemini achieved several significant firsts during the course of ten piloted missions:

  • Gemini 7 also set a human spaceflight endurance record of fourteen days for Frank Borman and James A. Lovell, which stood until both nations started launching space laboratories in the early 1970s.
  • On Gemini 8 March 1966, Command Pilot Neil Armstrong achieved the first docking between two spacecraft, his Gemini craft and an Agena target vehicle.
  • On Gemini 5 August 1965, astronauts L. Gordon Cooper and Charles "Pete" Conrad set a record of almost eight days in space, long enough for a piloted lunar mission.
  • On Gemini 12 November 1966, Edwin "Buzz" Aldrin spent over five hours working comfortably during three EVA sessions, finally proving that humans could perform productive tasks outside their spacecraft.
  • On Gemini 3 March 1965, astronauts Virgil "Gus" Grissom and John W. Young became the first to demonstrate their ability to change their crafts orbit.
  • On Gemini 6A December 1965, Command Pilot Wally Schirra achieved the first space rendezvous with Gemini 7, accurately matching his orbit to that of the other craft, station-keeping for three consecutive orbits at distances as close as 1 foot 0.30 m.
  • Gemini 11 September 1966, commanded by Conrad, achieved the first direct-ascent rendezvous with its Agena target on the first orbit, and used the Agenas rocket to achieve an apogee of 742 nautical miles 1.374 km, the crewed Earth orbit record still current as of 2015.

Most of the novice pilots on the early missions would command the later missions. In this way, Project Gemini built up spaceflight experience for the pool of astronauts for the Apollo lunar missions.


10. Soviet crewed Moon programs

Korolevs design bureau produced two prospectuses for circumlunar spaceflight March 1962 and May 1963, the main spacecraft for which were early versions of his Soyuz design. Soviet Communist Party Central Committee Command 655-268 officially established two secret, competing crewed programs for circumlunar flights and lunar landings, on August 3, 1964. The circumlunar flights were planned to occur in 1967, and the landings to start in 1968.

The circumlunar program Zond, created by Vladimir Chelomeys design bureau OKB-52, was to fly two cosmonauts in a stripped-down Soyuz 7K-L1, launched by Chelomeys Proton UR-500 rocket. The Zond sacrificed habitable cabin volume for equipment, by omitting the Soyuz orbital module. Chelomey gained favor with Khrushchev by employing members of his family.

Korolevs lunar landing program was designated N1/L3, for its N1 super rocket and a more advanced Soyuz 7K-L3 spacecraft, also known as the lunar orbital module Lunniy Orbitalny Korabl ", LOK, with a crew of two. A separate lunar lander Lunniy Korabl ", LK, would carry a single cosmonaut to the lunar surface.

The N1/L3 launch vehicle had three stages to Earth orbit, a fourth stage for Earth departure, and a fifth stage for lunar landing assist. The combined space vehicle was roughly the same height and takeoff mass as the three-stage US Apollo/ Saturn V and exceeded its takeoff thrust by 28%, but had only roughly half the translunar injection payload capability.

Following Khrushchevs ouster from power, Chelomeys Zond program was merged into the N1/L3 program.


11. Outer space treaty

The US and USSR began discussions on the peaceful uses of space as early as 1958, presenting issues for debate to the United Nations, which created a Committee on the Peaceful Uses of Outer Space in 1959.

On May 10, 1962, Vice President Johnson addressed the Second National Conference on the Peaceful Uses of Space revealing that the United States and the USSR both supported a resolution passed by the Political Committee of the UN General Assembly in December 1962, which not only urged member nations to "extend the rules of international law to outer space," but to also cooperate in its exploration. Following the passing of this resolution, Kennedy commenced his communications proposing a cooperative American/Soviet space program.

The UN ultimately created a Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, which was signed by the United States, USSR, and the United Kingdom on January 27, 1967, and went into force the following October 10.

This treaty:

  • holds any State liable for damages caused by their space object;
  • declares that the exploration of outer space shall be done to benefit all countries and shall be free for exploration and use by all the States;
  • exclusively limits the use of the Moon and other celestial bodies to peaceful purposes, and expressly prohibits their use for testing weapons of any kind, conducting military maneuvers, or establishing military bases, installations, and fortifications;
  • declares that "the activities of non-governmental entities in outer space, including the Moon and other celestial bodies, shall require authorization and continuing supervision by the appropriate State Party to the Treaty", and "States Parties shall bear international responsibility for national space activities whether carried out by governmental or non-governmental entities"; and
  • bars party States from placing weapons of mass destruction in Earth orbit, on the Moon, or any other celestial body;
  • explicitly forbids any government from claiming a celestial resource such as the Moon or a planet, claiming that they are the common heritage of mankind, "not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means". However, the State that launches a space object retains jurisdiction and control over that object;
  • "A State Party to the Treaty which has reason to believe that an activity or experiment planned by another State Party in outer space, including the Moon and other celestial bodies, would cause potentially harmful interference with activities in the peaceful exploration and use of outer space, including the Moon and other celestial bodies, may request consultation concerning the activity or experiment."

The treaty remains in force, signed by 107 member states. – As of July 2017


12. Disaster strikes both sides

In 1967, both nations faced serious challenges that brought their programs to temporary halts. Both had been rushing at full-speed toward the first piloted flights of Apollo and Soyuz, without paying due diligence to growing design and manufacturing problems. The results proved fatal to both pioneering crews.

On January 27, 1967, the same day the US and USSR signed the Outer Space Treaty, the crew of the first crewed Apollo mission, Command Pilot Virgil "Gus" Grissom, Senior Pilot Ed White, and Pilot Roger Chaffee, were killed in a fire that swept through their spacecraft cabin during a ground test, less than a month before the planned February 21 launch. An investigative board determined the fire was probably caused by an electrical spark and quickly grew out of control, fed by the spacecrafts pure oxygen atmosphere. Crew escape was made impossible by inability to open the plug door hatch cover against the greater-than-atmospheric internal pressure. The board also found design and construction flaws in the spacecraft, and procedural failings, including failure to appreciate the hazard of the pure-oxygen atmosphere, as well as inadequate safety procedures. All these flaws had to be corrected over the next twenty-two months until the first piloted flight could be made. Mercury and Gemini veteran Grissom had been a favored choice of Deke Slayton, NASAs Director of Flight Crew Operations, to make the first piloted landing.

On April 24, 1967, the single pilot of Soyuz 1, Vladimir Komarov, became the first in-flight spaceflight fatality. The mission was planned to be a three-day test, to include the first Soviet docking with an unpiloted Soyuz 2, but the mission was plagued with problems. Early on, Komarovs craft lacked sufficient electrical power because only one of two solar panels had deployed. Then the automatic attitude control system began malfunctioning and eventually failed completely, resulting in the craft spinning wildly. Komarov was able to stop the spin with the manual system, which was only partially effective. The flight controllers aborted his mission after only one day. During the emergency re-entry, a fault in the landing parachute system caused the primary chute to fail, and the reserve chute became tangled with the drogue chute, causing descent speed to reach as high as 40 m/s 140 km/h; 89 mph. Shortly thereafter, Soyuz 1 impacted the ground 3 km 1.9 mi west of Karabutak, exploding into a ball of flames. The official autopsy states Komarov died of blunt force trauma on impact, and that the subsequent heat mutilation of his corpse was a result of the explosive impact. Fixing the spacecrafts faults caused an eighteen-month delay before piloted Soyuz flights could resume.


13. Onward to the Moon

The United States recovered from the Apollo 1 fire, fixing the fatal flaws in an improved version of the Block II command module. The US proceeded with unpiloted test launches of the Saturn V launch vehicle Apollo 4 and Apollo 6 and the Lunar Module Apollo 5 during the latter half of 1967 and early 1968. Apollo 1s mission to check out the Apollo Command/Service Module in Earth orbit was accomplished by Grissoms backup crew commanded by Walter Schirra on Apollo 7, launched on October 11, 1968. The eleven-day mission was a total success, as the spacecraft performed a virtually flawless mission, paving the way for the United States to continue with its lunar mission schedule.

The Soviet Union also fixed the parachute and control problems with Soyuz, and the next piloted mission Soyuz 3 was launched on October 26, 1968. The goal was to complete Komarovs rendezvous and docking mission with the un-piloted Soyuz 2. Ground controllers brought the two craft to within 200 meters 660 ft of each other, then cosmonaut Georgy Beregovoy took control. He got within 40 meters 130 ft of his target, but was unable to dock before expending 90 percent of his maneuvering fuel, due to a piloting error that put his spacecraft into the wrong orientation and forced Soyuz 2 to automatically turn away from his approaching craft. The first docking of Soviet spacecraft was finally realized in January 1969 by the Soyuz 4 and Soyuz 5 missions. It was the first-ever docking of two crewed spacecraft, and the first transfer of crew from one space vehicle to another.

The Soviet Zond spacecraft was not yet ready for piloted circumlunar missions in 1968, after five unsuccessful and partially successful automated test launches: Cosmos 146 on March 10, 1967; Cosmos 154 on April 8, 1967; Zond 1967A September 27, 1967; Zond 1967B on November 22, 1967. Zond 4 was launched on March 2, 1968, and successfully made a circumlunar flight. After its successful flight around the Moon, Zond 4 encountered problems with its Earth reentry on March 9, and was ordered destroyed by an explosive charge 15.000 meters 49.000 ft over the Gulf of Guinea. The Soviet official announcement said that Zond 4 was an automated test flight which ended with its intentional destruction, due to its recovery trajectory positioning it over the Atlantic Ocean instead of over the USSR.

During the summer of 1968, the Apollo program hit another snag: the first pilot-rated Lunar Module LM was not ready for orbital tests in time for a December 1968 launch. NASA planners overcame this challenge by changing the mission flight order, delaying the first LM flight until March 1969, and sending Apollo 8 into lunar orbit without the LM in December. This mission was in part motivated by intelligence rumors the Soviet Union might be ready for a piloted Zond flight during late 1968. In September 1968, Zond 5 made a circumlunar flight with tortoises on board and returned safely to Earth, accomplishing the first successful water landing of the Soviet space program in the Indian Ocean. It also scared NASA planners, as it took them several days to figure out that it was only an automated flight, not piloted, because voice recordings were transmitted from the craft en route to the Moon. On November 10, 1968, another automated test flight, Zond 6, was launched. It encountered difficulties in Earth reentry, and depressurized and deployed its parachute too early, causing it to crash-land only 16 kilometers 9.9 mi from where it had been launched six days earlier. It turned out there was no chance of a piloted Soviet circumlunar flight during 1968, due to the unreliability of the Zonds.

On December 21, 1968, Frank Borman, James Lovell, and William Anders became the first humans to ride the Saturn V rocket into space, on Apollo 8. They also became the first to leave low-Earth orbit and go to another celestial body, entering lunar orbit on December 24. They made ten orbits in twenty hours, and transmitted one of the most watched TV broadcasts in history, with their Christmas Eve program from lunar orbit, which concluded with a reading from the biblical Book of Genesis. Two and a half hours after the broadcast, they fired their engine to perform the first trans-Earth injection to leave lunar orbit and return to the Earth. Apollo 8 safely landed in the Pacific Ocean on December 27, in NASAs first dawn splashdown and recovery.

The American Lunar Module was finally ready for a successful piloted test flight in low Earth orbit on Apollo 9 in March 1969. The next mission, Apollo 10, conducted a "dress rehearsal" for the first landing in May 1969, flying the LM in lunar orbit as close as 47.400 feet 14.4 km above the surface, the point where the powered descent to the surface would begin. With the LM proven to work well, the next step was to attempt the landing.

Unknown to the Americans, the Soviet Moon program was in deep trouble. After two successive launch failures of the N1 rocket in 1969, Soviet plans for a piloted landing suffered delay. The launch pad explosion of the N-1 on July 3, 1969, was a significant setback. The rocket hit the pad after an engine shutdown, destroying itself and the launch facility. Without the N-1 rocket, the USSR could not send a large enough payload to the Moon to land a human and return him safely.


14. Apollo 11

Apollo 11 was prepared with the goal of a July landing in the Sea of Tranquility. The crew, selected in January 1969, consisted of commander CDR Neil Armstrong, Command Module Pilot CMP Michael Collins, and Lunar Module Pilot LMP Edwin "Buzz" Aldrin. They trained for the mission until just before the launch day. On July 16, 1969, at exactly 9:32 am EDT, the Saturn V rocket, AS-506, lifted off from Kennedy Space Center Launch Complex 39 in Florida.

The trip to the Moon took just over three days. After achieving orbit, Armstrong and Aldrin transferred into the Lunar Module, named Eagle, and after a landing gear inspection by Collins remaining in the Command/Service Module Columbia, began their descent. After overcoming several computer overload alarms caused by an antenna switch left in the wrong position, and a slight downrange error, Armstrong took over manual flight control at about 180 meters 590 ft, and guided the Lunar Module to a safe landing spot at 20:18:04 UTC, July 20, 1969 3:17:04 pm CDT. The first humans on the Moon waited six hours before they left their craft. At 02:56 UTC, July 21 9:56 pm CDT July 20, Armstrong became the first human to set foot on the Moon.

The first step was witnessed by at least one-fifth of the population of Earth, or about 723 million people. His first words when he stepped off the LMs landing footpad were, "Thats one small step for man, one giant leap for mankind." Aldrin joined him on the surface almost 20 minutes later. Altogether, they spent just under two and one-quarter hours outside their craft. The next day, they performed the first launch from another celestial body, and rendezvoused back with Columbia.

Apollo 11 left lunar orbit and returned to Earth, landing safely in the Pacific Ocean on July 24, 1969. When the spacecraft splashed down, 2.982 days had passed since Kennedys commitment to landing a man on the Moon and returning him safely to the Earth before the end of the decade; the mission was completed with 161 days to spare. With the safe completion of the Apollo 11 mission, the Americans won the race to the Moon.


15. Competition winds down

NASA had ambitious follow-on human spaceflight plans as it reached its lunar goal, but soon discovered it had expended most of its political capital to do so.

The first landing was followed by another, precision landing on Apollo 12 in November 1969. NASA had achieved its first landing goal with enough Apollo spacecraft and Saturn V launchers left for eight follow-on lunar landings through Apollo 20, conducting extended-endurance missions and transporting the landing crews in Lunar Roving Vehicles on the last five. They also planned an Apollo Applications Program to develop a longer-duration Earth orbital workshop later named Skylab to be constructed in orbit from a spent S-IVB upper stage, using several launches of the smaller Saturn IB launch vehicle. But planners soon decided this could be done more efficiently by using the two live stages of a Saturn V to launch the workshop pre-fabricated from an S-IVB which was also the Saturn V third stage, which immediately removed Apollo 20. Budget cuts soon led NASA to cut Apollo 18 and 19 as well, but keep three extended/Lunar Rover missions. Apollo 13 encountered an in-flight spacecraft failure and had to abort its lunar landing in April 1970, returning its crew safely but temporarily grounding the program again. It resumed with four successful landings on Apollo 14 February 1971, Apollo 15 July 1971, Apollo 16 April 1972, and Apollo 17 December 1972.

In February 1969, President Richard M. Nixon convened a Space Task Group to set recommendations for the future US civilian space program, headed by his Vice President Spiro T. Agnew. Agnew was an enthusiastic proponent of NASAs follow-on plans, and the STG recommended plans to develop a reusable Space Transportation System including a Space Shuttle, which would facilitate development of permanent space stations in Earth and lunar orbit, perhaps a base on the lunar surface, and the first human flight to Mars as early as 1986 or as late as 2000. Nixon had a better sense of the declining political support in Congress for a new Apollo-style program, which had disappeared with the achievement of the landing, and he intended to pursue detente with the USSR and China, which he hoped might ease Cold War tensions. He cut the spending proposal he sent to Congress to include funding for only the Space Shuttle, with perhaps an option to pursue the Earth orbital space station for the foreseeable future.

The USSR continued trying to perfect their N1 rocket, finally canceling it in 1976, after two more launch failures in 1971 and 1972.


15.1. Competition winds down Salyuts and Skylab

Having lost the race to the Moon, the USSR decided to concentrate on orbital space stations. During 1969 and 1970, they launched six more Soyuz flights after Soyuz 3, then launched the first space station, the Salyut 1 laboratory designed by Kerim Kerimov, on April 19, 1971. Three days later, the Soyuz 10 crew attempted to dock with it, but failed to achieve a secure enough connection to safely enter the station. The Soyuz 11 crew of Vladislav Volkov, Georgi Dobrovolski and Viktor Patsayev successfully docked on June 7, and completed a record 22-day stay. The crew became the second in-flight space fatality during their reentry on June 30. They were asphyxiated when their spacecrafts cabin lost all pressure, shortly after undocking. The disaster was blamed on a faulty cabin pressure valve, that allowed all the air to vent into space. The crew was not wearing pressure suits and had no chance of survival once the leak occurred.

Salyut 1s orbit was increased to prevent premature reentry, but further piloted flights were delayed while the Soyuz was redesigned to fix the new safety problem. The station re-entered the Earths atmosphere on October 11, after 175 days in orbit. The USSR attempted to launch a second Salyut-class station designated Durable Orbital Station-2 DOS-2 on July 29, 1972, but a rocket failure caused it to fail to achieve orbit. After the DOS-2 failure, the USSR attempted to launch four more Salyut-class stations up to 1975, with another failure due to an explosion of the final rocket stage, which punctured the station with shrapnel so that it would not hold pressure. All of the Salyuts were presented to the public as non-military scientific laboratories, but some of them were covers for the military Almaz reconnaissance stations.

The United States launched the orbital workstation Skylab 1 on May 14, 1973. It weighed 169.950 pounds 77.090 kg, was 58 feet 18 m long by 21.7 feet 6.6 m in diameter, and had a habitable volume of 10.000 cubic feet 280 m 3. Skylab was damaged during the ascent to orbit, losing one of its solar panels and a meteoroid thermal shield. Subsequent crewed missions repaired the station, and the final missions crew, Skylab 4, set a human endurance record with 84 days in orbit when the mission ended on February 8, 1974. Skylab stayed in orbit another five years before reentering the Earths atmosphere over the Indian Ocean and Western Australia on July 11, 1979.


15.2. Competition winds down Apollo–Soyuz Test Project

In May 1972, President Richard M. Nixon and Soviet Premier Leonid Brezhnev negotiated an easing of relations known as detente, creating a temporary "thaw" in the Cold War. The time seemed right for cooperation rather than competition, and the notion of a continuing "race" began to subside.

The two nations planned a joint mission to dock the last US Apollo craft with a Soyuz, known as the Apollo-Soyuz Test Project ASTP. To prepare, the US designed a docking module for the Apollo that was compatible with the Soviet docking system, which allowed any of their craft to dock with any other e.g. Soyuz/Soyuz as well as Soyuz/Salyut. The module was also necessary as an airlock to allow the men to visit each others craft, which had incompatible cabin atmospheres. The USSR used the Soyuz 16 mission in December 1974 to prepare for ASTP.

The joint mission began when Soyuz 19 was first launched on July 15, 1975, at 12:20 UTC, and the Apollo craft was launched with the docking module six and a half hours later. The two craft rendezvoused and docked on July 17 at 16:19 UTC. The three astronauts conducted joint experiments with the two cosmonauts, and the crew shook hands, exchanged gifts, and visited each others craft.


16.1. Legacy Human spaceflight after Apollo

In the 1970s, the United States began developing the reusable orbital Space Shuttle spaceplane, and launched a range of uncrewed probes. The USSR continued to develop space station technology with the Salyut program and Mir Peace or World, depending on the context space station, supported by Soyuz spacecraft. They developed their own large spaceplane under the Buran program. The USSR dissolved in 1991 and the remains of its space program mainly passed to Russia. The United States and Russia have worked together in space with the Shuttle–Mir Program, and again with the International Space Station.

The Russian R-7 rocket family, which launched the first Sputnik at the beginning of the Space Race, is still in use today. It services the International Space Station ISS as the launcher for both the Soyuz and Progress spacecraft. It also ferries both Russian and American crews to and from the station.

Currently, the US Commercial Crew Development and Artemis program are intended to result in the development of a variety of crewed spacecraft. Russia is also developing a Soyuz replacement, and China has sent crewed Shenzhou spacecraft to orbit.

Users also searched: